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The constrained blister test is analyzed in the framework of linear elastic fracture mechanics. Exact results for 
the energy release rate and the mode mixedness are obtained as  functions of quantities which are natural to 
measure in the test. Effects of geometrical non-linearities and initial in-plane stresses are included. An 
analysis of the range of loads for which the test results in configurationally stable delamination is performed. 

KEY WORDS Blister test; mixed mode fracture mechanics; configurational stability; contact analysis; 
buckling under contact. 

INTRODUCTION 

The constrained blister test for measuring the adhesion of thin films or tapes to various 
substrates was suggested in the mid-I980's, (a review of the early literature on the 
subject can be found in Chang et d.'). The geometry of the test is shown in Figure 1 
where it is seen that the difference between this test and the classical blister test is the 
constraint from a rigid wall above the film which prevents the energy release rate to 
increase unbounded even under pressure controlled delamination and, thus, offers 
some advantages for experiments. 

In the framework for fracture analysis of interfacial, thin film delamination described 
in Hutchinson and Suo,' the energy release rate and its separation into mode 1 and 
mode 2 can be calculated from the effective crack tip loads and M and AN (see below for 
definitions) according to 

[ M2 + AN2 
h 2  1 6(1 - vz)  

Eh3 
G =  

ANhsinwf @ M c o s u  
ANhcosw- @Msinw 

tan II/ = 

Here, E is the elastic modulus of the film, v is Poisson's ratio, h is the film thickness and 
the angle w is tabulated in Suo and Hutchinson3 as a function of the elastic mismatch 
between the film and the substrate. Above, M is the effective bending moment in the 
film and AN is the change in the membrane stress. The interpretation of the phase angle, 
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232 H. M. JENSEN AND B. COCHELIN 

FIGURE I 
crack tip. 

Geometry of the constrained blister test with the sign convention for the effective loads on the 

$, in (2) as a parameter separating mode 1 and mode 2 contributions to G has been 
discussed in detail in Hutchinson and Suo.' As a special case, in the absence of elastic 
mismatch, tan($) = Kz/Kl and w = 52.1". Interface fracture criteria of the type G = 
G,-($) were formulated and compared with experimental results in Jensen et d4 
showing that the classical elastic fracture criterion independent of $ is inadequate for 
interface debonding. 

The paper will treat the constrained blister test in this formulation. At first, the 
axisymmetricstate is discussed in the linear limit. It is shown that when the radius of the 
contact zone is large, i.e., 1-h << 1, the energy release rate reaches a steady state value 
G = pH, which is independent of the radius of the delamination, R.  This steady state 
limit is studied in detail including effects of initial in-plane stresses and geometrical 
non-linearities. The effect of initial in-plane stresses is included for two reasons: Firstly, 
residual stresses are often present in thin film systems and have a profound influence on 
the behaviour of the test and, secondly, for some experimental applications, in-plane 
stresses are applied before loading with pressure to stabilize the test. 

The experimental results obtained with the test' suggest that instabilities may occur 
at high loads in the sense that the circular delamination front becomes energetically 
unfavorable compared with other modes of delamination. This limits the use of the test 
and for this reason a stability analysis of the steady state is performed. 

The purpose of this paper is to derive exact results for the crack tip quantities of 
interest (1) and (2) specifically for the constrained blister test and to analyze the test for 
stability. The results are presented as functions of the quantities which are natural to 
measure in experiments. 

THE LINEAR AXISYMMETRIC STATE 

To gain some insight into the problem, consider a circular delamination of radius R 
under axisymmetric deformation. The normal deflection, w(r) ,  under pressure, p ,  valid 
for small deformations is given by 

pr4R4 
w(r)  = c1 + c2 In(r) + c j  rz + c4r2 In@) + ~ 

64 D (3) 
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CONSTRAINED BLISTER TEST 233 

where r ( h I r I  1) is the distance to the centreline normalized by R and 
D = Eh3/12(l ~ v 2 )  is the bending stiffness. The constants ci are chosen so that the 
boundary conditions at r = 1 and the contact conditions at r = h are satisfied. These 
conditions are 

w ( l ) = O  w ‘ ( l ) = O  (4a) 

w(h)  = H ~ ’ ( b )  = 0 M ( b )  = 0 (4b) 

The five conditions in (4) define a system of equations in the five unknowns ci and b, 
which was also formulated in Lai and Dillard.5 The equations are linear in ci with a 
non-linear relationship between the height of the constraint, H ,  and the radius of the 
contact zone, hR. From the solution of (4), the bending moment at the crack front 
M = Dw”( 1)/R2 is calculated and inserted in (1) with A N  = 0, from which the energy 
release rate is obtained as 

- p2R4 [(h4 - 1) In(h) - (b2  - 1)2 1’ ( 5 )  

] (6) 

160 b2 - 1 - 2 In(b) 

with the relationship between H and h given by 

pR4 h6 - 5b4 + 7h2 - 3 + 2 In(b) (3h4 - 2h2 - 1) - 8b4 ln(h)’ 
64 D b2 - 1 - 2In(h) 

H = - [  

By combination of ( 5 )  and (6) it is readily seen that G = pH.f(b) wheref(h = 1) = 1. A 
plot of G/pH is shown in Figure 2 where it is seen that the energy release rate reaches a 
steady state value, G = pH, as delamination increases. In an experimental situation, 

I,’ z 
9 

8 

7 

6 

5 
I ; 10 15 20 25 30 

RIL 

FIGURE 2 
normalized by its distance to the contact radius. 

Variation of normalized energy release rate as  a function of the radius of delamination 
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234 H. M. JENSEN AND B. COCHELIN 

natural quantities to  measure are p ,  H ,  R and b. From ( 5 )  and (6), one of these is not 
necessarily required in order to determine G. 

The expansions of G and H from b = 1 are obtained from ( 5 )  and (6) from which 

G z pH (1 - ii) + 0 ($) (7) 

where L = R ( l  - b). This is a small correction to an earlier published result' where 
G = pH( 1 - L/2R) was obtained by an approximate method. In the formulation above, 
it is not necessary in general to calculate G numerically as suggested in Lai and 
Dillard.' 

To conclude this introductory section, the crack tip mode mixedness can be 
predicted from (2) as K , / K ,  = - 0.78 for identical elastic properties of the film and the 
substrate. Note that there is no restriction on the elastic constants of the film or the 
substrate provided they are isotropic; the assumption of identical properties is for 
illustration only. In the linear theory leading to (3), no change in the ratio between the 
mode 2 and mode 1 field at the crack tip can be predicted. The following section which 
takes non-linearities into account shows that this change in mode mixedness can be 
substantial especially in the presence of initial in-plane stresses. We will analyze the 
steady state limit only, so that the circular geometry at the crack front can be replaced 
by a plane strain Cartesian geometry. 

STEADY STATE ANALYSIS 

In the steady state limit, plane strain conditions hold in the circumferential direction. In 
the analysis of the steady state, geometrical non-linearities are included to allow the 
height of the constraint to be greater than the film thickness. In many thin film systems 
residual stresses are present and these are also included in the analysis by assuming 
initial values for the in-plane stresses. In the following, we refer to these as prestresses 
and they are assumed to act equi-biaxial. 

Y 

X 

FIGURE 3 Geometry for the steady state analysis. 
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CONSTRAINED BLISTER TEST 235 

A Cartesian coordinate system is introduced where x = 0 at I = 1 (see Fig. 3) and 
x = L at I = b. In this and the following sections, dimensionless quantities ( - )  are 
introduced according to 

M L ~  - N L ~  p~~ - ~ G L ~  M = -  N=-- p=-  G = -  
Dh D Dh Dh2 

where u and u are the in-plane displacements in the x- and y-direction, respectively. In 
non-dimensional quantities, the governing von Karman equations and boundary 
conditions are - 

@ I v  - ( N o  + A f i )  fi” = jj 

A I ? = 6  (fi’)’dZ (9) l - 
f i ( O ) = O  f i ’ (O)=O k ( l ) =  H G ’ ( l ) = O  @“(1)=0 

where fi0 is the normalised prestress in the system. The solution to (9) can be obtained 
in closed form. In the derivation of (9), it is assumed that the deformation is plane strain 
in the y-direction when measured relative to the prestressed state. I t  is also assumed 
that N x x ( x  = L )  = N o  which corresponds to a frictional sticking boundary condition 
for the in-plane displacement: u (x = L )  = 0. Note that, due to the normalizations in (S), 
the distance L from the crack front to the contact zone-which is free to vary-does 
not enter the equations explicitly. 

Below, we list the exact solutions to (9) in the two limits p + O  and p + oc, which give 
very simple expressions for the fundamental quantities of interest. These are given 
together with their approximate range of validity. The full non-linear solution is also 
presented in a form which can directly be applied to experimental measurements. 

Solutions for Small Deformations 

When the normal deformation @ is small, the stress change, AI?, relative to the 
prestress, fio, in (9) can be neglected and the closed form solution gives the following 
results for the energy release rate for tensile prestresses (KO > 0) and compressive 
prestresses (Go < o), respectively. 

(4 + t Z )  cosh(t) + t 2  - 4 - 4t  sinh(t) 
(cosh(t) - 1) t4 

(4 - t z )  cos(t) - t 2  - 4 + 4t sin([) 
(cos(t) - 1 )  t4 

- 
G = p 2  x 

Comparison with the full solution shows that (10) holds within 5% accuracy for 
j I 2( 15 + KO), at least for relatively small values of normalized prestress. Since (9) has 
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236 H. M. JENSEN AND B. COCHELIN 

been linearized, the change in membrane stress is neglected and the mode mixedness 
remains constant at the same value as in Section 2. Note that (10) requires knowledge of 
the prestress which is not always easy to measure. But (10) can be reexpressed as 

G = 2  pR (1  1 )  

for arbitrary signs of the prestress. The relationship in ( 1  1)  does not require knowledge 
of the prestresses and it is identical to the limit value of (7) as L -, 0. Note that the factor 
2 in ( 1  1 )  follows from the choice of normalization of G in (8). 

Solutions for Large Pressure 

The solution of (9) for p"+ co also gives simple expressions for the fundamental 
quantities of interest. Now, 

which is obtained as an exact limit of the full closed form solution. The results in (12) are 
accurate within 5% of the full solution when p" 2 103(50-fi0) for moderate values of 
normalized prestress, The ratio between the bending moment and the membrane stress 
change reaches a constant value in this limit, and from (12) and (2), K , / K  , = - 1.74 in 
the special case of no elastic mismatch in the system. Note from (12) that the bending 
moment at the boundary cannot be neglected in the membrane limit due to the 
development of a boundary layer, see also Jensen6. 

Buckling-Driven Delamination 

In the case of a compressive prestress N o  < 0 with p = 0, a solution to (9) will always 
exist since L is not limited in the formulation. In practice, L is limited by the circular 
geometry and sets a lower limit to the prestress at which buckling occurs. The solution 
to (9) again results in remarkably simple relationships between the crack tip quantities 
and quantities which are natural to measure for the test. Now, 

It is interesting to note also that, in this limit, there is no change in the phase angle of 
loading despite the fact that the solution is valid for arbitrary fi. For w = 52.1" in (2), 
K , / K ,  = 1.28. The change in sign of the ratio K , / K , ,  compared with the previous 
sections, indicates that the crack tip solutions in Ref. 3 leading to (2) no longer are valid, 
because K ,  < 0 is predicted and effects of contacting crack sides should be taken into 
account. The combinations of loads for which (2) is valid will be shown in Section 3.4. 

Exact Solutions 

The exact solution to (9) is very elaborate and it will not be reported here. Simple and 
useful forms of the exact solution can be obtained after observing that the integral 
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CONSTRAINED BLISTER TEST 231 

in (9) varies slowly from 9fi’ for buckling-driven delamination to 8fi’ as fi  --f 00 
according to (12) and (13). For tensile prestresses, the variation is even less going from 
288fi2/35( rz 8.23 fi’) for small pressure to 8fi’ as d -  co. The explanation for the 
integral being nearly constant is the limited possibility for the normal deflection to 
change under the boundary and contact conditions (9). In Figure 4, all possible normal 
deflections are shown between the two extremes; buckling-driven delamination, and 
the membrane limit which is obtained as d - +  co. 

In order to determine the bending moment, fi, at the crack front so that the crack tip 
quantities (1) and (2) can be calculated, the residual stress in the system, go, must be 
known. If it cannot be measured directly, the curves obtained from the exact solution of 
(9) shown in Figure 5 can be combined with measurements of pressure, constraint 
height and the distance L Knowing the residual stress, the bending moment is 
calculated from the exact solution 

- 1  
2 + ssinh(s)/(l - cosh(s)) 

tension 

fi = 2fis’ x 1 
1 

compression 
2 - s sin(s)/( 1 - cos(s)) 

where s = Jm. The separation between the region with compression and the 
region with tension is obtained by solving(9) with Go + A f i  = 0. From this, the blister is 

x 
FIGURE 4 
various load conditions. 

Variation of normal deflection of the blister between the crack front and the contact zone at 
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238 H .  M .  JENSEN AND B. COCHELIN 

B 

FIGURE 5 Constraint height as a function of pressure from which the prestress can be determined 

in tension if: 

6 < PI72 from which 

It  does not seem to be possible to avoid measuring the prestress or to estimate it from 
Figure 5 in order to determine the bending moment. 

The denominator in ( 2 )  is zero for A f i - f i f i  t a n o = O  and the present 
analysis holds for A f i  - f i f i  t a n o  < O ,  only, since this implies that K ,  > 0'. 
Otherwise, effects of contacting crack sides should be included in the analysis 
Figure 6 shows the region where ( 2 )  is valid for w = 52.1" corresponding to no 
elastic mismatch in the system. In this region, the ratio of stress change to bending 
moment is shown in Figure 7 which is obtained from the exact solution. From 
Figure 7 ,  the phase angle of loading, $, at the crack tip can be obtained for any 
elastic mismatch using ( 2 )  with the appropriate value of to from Ref. 3 .  I t  is clearly 
seen that the presence of prestresses in the blister can significantly change the phase 
angle of loading, $, a t  the crack tip. 

The presence of prestresses also has a significant influence on the energy release rate 
as shown in Figure 8. For completeness, the plots in Figures 6-8 include the regions 
where the stress in the blister is compressive with the separation between the tensile and 
compressive zones as given by (1 5) included. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1
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FIGURE 6 
and the pressure are normalised according to (8). 

Region where K ,  > 0 in the case of no elastic mismatch in the system. Note that the prestress 

3 I 1 I I 

12 . 
‘3 

-16 

I 
0 200 400 600 800 11 

P 
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FIGURE 7 Ratio of effective crack tip loads from which the mode mix can be obtained using (2). 
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FIGURE 8 Energy release rate as a function of pressure for different levels of prestress 

CONFIGURATIONAL STABILITY 

A phenomenon which may affect the applicability of the constrained blister test is the 
possible evolution of non-axisymmetric crack growth. Such non-symmetries may 
result from bifurcations in the delaminated regions or from energetically more favor- 
able crack front morphologies than the circular shape.7 - 9  The purpose of the following 
section is to show the range of loading parameters for which the constrained blister test 
is stable in this sense. 

A small perturbation of the crack front as sketched in Figure 9 is introduced. In 
non-dimensional quantities, the plate equations governing the perturbation problem 
are 

a;" - ( 2 P  + fiJ a; + P ( L 2  + fi,,) a]  = 12 $"(a; + a; @' + v la,) 
l - v -  

(LZ] + a; a' + v R6,)' + - k ( q  - k"(ii, + a1 3)) = 0 

-(3, - R ( i i ,  + a1 w)y - k"(k"C, + v( i i ,  + a'@>)) = 0 

2 
1 - v  

2 

where k = 2nL/J. and I is the perturbation wavelength. The normal deflection of the 
blister, a(:), entering (16) is known from the solution in Section 3.4 and for complete- 
ness this function is given in the Appendix. The boundary conditions at 2 = 0 derived 
by methods similar to the analysis in Hutchinson et aL7 and Jensen" are 
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CONSTRAINED BLISTER TEST 24 I 

’ t  

FIGURE 9 Conventions for the perturbation analysis. The crack front is perturbed by ~ : c o s ( ~ y / L )  and the 
perturbation of the contact zone following this is c c  cos(ky/L) with c determined as  a part of the solution. 

where A f i  z 8fi’ (cf. Section 3.4 and Fig. 4) and k is given by (14). A consequence of 
the crack front perturbation is, in general, a perturbation of the contact zone. The 
amplitude of the contact perturbation is unknown and has to be determined as a part of 
the solution. The contact conditions at I = 1 are given by 

(18) 

where the last condition at .f = 1 ensures that the contact condition M = 0 is not broken 
along the perturbed contact zone. The unknown c appearing in (18) determines the 
ratio between the amplitudes of the contact zone perturbation and the crack front 
perturbation indicated in Figure 9. As for the axisymmetric problem in Section 2 and 
the steady state problem in Section 3, one more boundary condition than for conven- 
tional problems is obtained reflecting that the extend of the contact area is unknown 
u priori. 

Next, from the solution of (16)-.( 18), the energy release rate and phase angle of load- 
ing can be calculated along the perturbed crack front and compared with the quantities 
on the straight front. The shape of the crack is then given by choosing the mode which 
releases most energy at the crack tip. This criterion for choosing the most stable mode is 
dependent on what interface fracture criterion is imposed. In the simplest form, the 
most energetically favorable mode of delamination has a value of k for which 

(Afl- tanwfi@)(l2f i ’ ,  - t a n w f i G ; ) +  

r ( A f i  tan o + f i  k)( 12 6; tan o + f i  G;) = minimum 

where r can vary between 0 and 1 with these two extremes corresponding to a fracture 
criterion where K ,  = K ,  independent of K ,  and the classical Griffith criterion G = G, 
independent of K JK, ,  respectively. A micromechanical model where these two 

(19) 
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Tens ion  S t a b l e  r e g i m e  

C o m p r e s s i o n  
-151- 

-2K-  

-2sc- 

-3od 
2.5 3.0 3.5 4.0 4.5 5.0 5 . 5  3 6.0 

FIGURE 10 
the constraint for which the test results in configurationally stable delamination. 

Stability map for the constrained blister test showing combinations of prestress and height of 

fracture criteria apply for rough and smooth interfaces, respectively, was analysed in 
Evans and Hutchinson." The straight crack front is stable if the minimum in (19) is 
reached for k = 0. 

The system of ordinary differential equations (16) under the boundary equations (17) 
and (18) are integrated numerically using a standard Runge-Kutta procedure. The 
integration is performed as an initial value problem from 2 = 0 to x" = 1 so that a linear 
set of equations in the five unknowns c, GJ; (0), Kf:(O), ii; (0), 17'~ (0) is obtained from the 
five boundary conditions at 2 = 1 in (18). During the stability analysis, the sign of the 
determinant of this linear system is checked. The zeroes of the determinant correspond 
to buckling of the deformed plate under the contact conditions with the wall (18). 

Numerical results of the stability analysis are summarized in Figure 10 where 
combinations of prestress and height of the constraint leading to instability and 
bifurcation are shown. Only tensile stresses in the delaminated region are considered. 
For fi < - 2.5, the constrained blister test results in configurationally stable delamina- 
tion. For fi > 2.5, instabilities in the shape of the crack front may occur for sufficiently 
large compressive prestresses. From Figure 10 it is possible to read off how large a 
tensile stress there has to be superimposed on compressive prestresses to stabilize the 
test. The bifurcations in the system occur with 1 z L in the range of parameters in 
Figure 10. 

CONCLUSION 

The constrained blister test was analysed in the context of linear elastic fracture 
mechanics. Exact results for the crack tip energy release rate and mode mixedness valid 
for arbitrary elastic mismatch between the film and the substrate were derived. The 
axisymmetric state was analysed in the linear limit, while the steady state was analysed 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



CONSTRAINED BLISTER TEST 243 

more rigorously. In the steady state analysis, the circular geometry was replaced by a 
Cartesian geometry with a straight crack front. Effects of initial in-plane stresses and 
geometrical non-linearities were included. A stability analysis was carried out to 
investigate the range of loads for which the constrained blister test is useful in the sense 
that the straight crack front is the most energetically favorable mode of delamination. 
The stability analysis included, as a special case, a bifurcation analysis of a finitely 
deformed plate in unilateral contact with a wall. 
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APPENDIX 

In this Appendix, for completeness, we list the expression for the normalised deflection 
KJ from the exact solution of (9) which enters the perturbation equations (16)-( 18). The 
solution is shown only for a state of tension in the blister. Note, as given by (15), that this 
can also be the result of compressive prestresses provided the pressure is sufficiently 
high. The deflection is 

cosh(sE) - 1 sinh(s2) - sE 

where 

-u4i i s2  p cosh(s) - 1 
u2 = a =  2 i j a 2 s 2  +-  p b =  - _  

a 4 - 2 a 2  s2 a 4 - 2 a 2  2 S 2  

sinh(s) ~ - i i a2s4  
a4 = ~ 

S p =  2a4(l  - s 2 ) -  1 - 2 a 2  
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